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1 Introduction

Imagine a bacterial infection that spreads through a population. Preventive treatment (for example,

pre-exposure prophylaxis) is available, but supply is limited. Therefore, the government seeks to

identify and select high-risk individuals for this treatment. Fortunately, a simple test, which is easy

to administer across the population, provides a reasonable (though noisy) identification of individual

risk. Accordingly, the existing policy grants treatment to individuals who score high on this test.

Recently, a more accurate—yet costly—test became available and was added as a second step to

improve the screening. Specifically, the first test is used to identify a subset of individuals as high-risk,

and they are then re-examined using the second test, so that only the ones with the highest risk-score

receive the treatment. The final number of people receiving treatment remains as before. After some

experience with the new screening procedure, it appears that the two-stage process did not improve the

identification, in fact, it produced worse results altogether! Namely, the combined test was more likely

to misidentify low-risk individuals as high-risk ones compared to the one-stage procedure previously

utilized. How is this possible?

In the current paper we answer this question through the analysis of dynamic screening processes,

such as the one described above. We focus on a decision maker who screens elements from a general

set, based on noisy valuations. The screening process could vary from a single to multiple stages, while

keeping an overall capacity constraint on accepted elements. In other words, once a dynamic screening

process is in place, a subset of the elements are rejected in every stage, whereas the remaining elements

are independently re-evaluated in subsequent stages.

Within this framework, we strive to identify the key advantages and disadvantages of dynamic

screening. We pursue this goal through two complementing paths. The first is a comparison of a

one-stage and a two-stage screening. The second path follows an asymptotic approach, dealing with

multi-stage screening in which the number of stages increases. The joint results of these two approaches

shed light on why do people use dynamic screening, and under what conditions additional screening

stages lead to suboptimal outcomes.

Specifically, the first research path introduces a basic concept that we refer to as the hidden cost

of dynamic screening. At face value, additional screening stages impose a direct cost in time and

effort. Intuitively, one would expect that the added costs would be fully justified and compensated

for by the anticipated superior nature of the obtained outcomes. We show, however, that even when

the accuracy of the additional stages is superior, they may in fact generate inferior results, both in

terms of the expected value and in terms of stochastic dominance. The basic idea behind this result

is that given a capacity constraint on accepted elements, the introduction of additional stages must

be accompanied by some self-induced slack. One cannot simply add screening stages without either
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lowering the bar in preliminary stages and introducing suboptimal elements, or otherwise violating the

capacity constraint. Once these suboptimal elements are introduced, the noise in subsequent stages

becomes more effective/destructive, although it is strictly more informative (in the sense of Lehmann

(1988), for example) compared to previous stages. Let us explain this insight through the following

(stylized) example, which will also serve to present the key findings of our second research method.

1.1 The hidden cost of dynamic screening: an example of self-induced slack

Let us return to our preventive-treatment example. To simplify the exposition, assume that the

individual-risk parameter is uniformly distributed across the population, according to a random vari-

able V „ U r0, 1s. Because the preliminary test is somewhat noisy, it cannot identify the realized

value v of every individual, but only v `N1, where N1 „ U r´1{4, 1{4s is an additive unbiased noise

variable (i.e., independent and symmetric about zero). Assume further that the limited supply allows

treatment for only 5% of the population. Following Lagziel and Lehrer (2020), it is optimal for the

government to use a threshold strategy. Thus, to meet the capacity constraint, a threshold is fixed

so that a realized noisy valuation grants treatment if and only if it is above that threshold. This

one-stage screening process yields a conditional distribution over the individual-risk parameter (across

the population), denoted V1, whose CDF FV1pvq is given by the solid (blue) graph in Figure 1(a).

Now consider the updated two-stage policy which involves the application of a superior second

test. Let us assume the second test is 20% more accurate, so it is characterized by an additive noise

variable N2 „ U r´1{5, 1{5s. Again, due to the limited supply and high costs, the government decides

the administer the first test across the population, and only the top 10% of high-risk individuals

are subjected to the second test. Eventually, the 5% treatment constraint is met. This two-stage

screening yields a conditional distribution of individual risk, denoted V2, whose CDF FV2pvq is given

by the dashed (red) graph in Figure 1(a).

Computing the conditional expected value for both processes, we get that ErV1s ą ErV2s. So not

only the additional screening stage is costly, it actually generates an inferior outcome. Moreover, in

a slightly worse situation, where the overall supply of treatment is just 3% and the second test is

only available for 6% of high-risk individuals, then the one-stage screening first-order stochastically

dominates the two-stage process [see the respective graphs in Figure 1(b)].

The cause for this phenomenon is the self-induced slack of dynamic screening. The introduction

of additional screening stages must be accompanied by a reduced acceptance criterion (i.e., lower

threshold) in preliminary stages. This change in criterion transfers additional burden into advanced

screening stages in which both the noise and the sample space reduce simultaneously, thus creating a

considerable consequent effect on the outcomes. In other words, there is a built-in trade-off in which
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Figure 1: Both graphs relate to the example of one-stage and two-stage screening with V „ U r0, 1s, N1 „ U r´1{4, 1{4s,

and N2 „ U r´1{5, 1{5s. The solid (blue) lines are the CDFs, denoted FV1pvq, among values under a one-stage screening,

while the dashed (red) lines are the CDFs, denoted FV2pvq, among values under a two-stage process. Though first-order

stochastic dominance exists under a 3% treatment constraint (or below), but not under a 5% rate (see single crossing at

solid black dot), the expected value under one-stage screening is strictly higher in both cases.

the sample size and noise decrease at the same time, so that the expected outcome could go either

way.

Note that the concept of dynamic screening need not be dynamic in time. Specifically, one can

get similar results when using several tests concurrently, while following a unanimity rule. Although

technically not dynamic in time, the unanimity rule assures that the dual screening is essentially a

dynamic process. In recruitment processes, for example, or even in peer-review academic publishing,

the use of two judges under a unanimity rule (for acceptance) is, de facto, a dynamic screening process.

What are the conditions that lead to sub-optimal outcomes? First and foremost, it is important to

note that such results are not limited to uniform distributions (we provide similar results for general

non-atomic distributions). Second, as we already know,1 a one-stage screening process based solely

on a more-accurate second test yields better results than a one-stage screening given the first, basic

test. Thus, the fact that most of the screening is performed in less accurate stages plays an important

role generating this phenomenon. In fact, the effect is completely reversed when shifting from “elite”

screening (i.e., screening at the top of the distribution) to “low-level” screening. In other words,

the implicit cost becomes evident when the overall capacity (i.e., acceptance) constraint is low, and

subsequent stages are more vulnerable to relatively high distributive noises. If one should examine the

1See the notion of a contraction mapping in Lagziel and Lehrer (2020).
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previous examples given a high supply of treatment (for example, more than 70%), then the two-stage

screening stochastically dominates the one-stage process.

This distinction brings us to the second part of our analysis, i.e., the asymptotic approach. Let us

now consider a slightly different example: screening job applicants. Because the stakes are high, many

cutting-hedge institutions conduct prolonged applicants screening processes with multiple stages. It

seems quite implausible that all these institutions are under-performing. To remove doubt, this is

not a claim that we make. Once multiple stages are introduced, then the overall constraint could

be maintained by consistently screening in small portions. That is, every stage can support a high

acceptance rate, effectively making it a low-level screening, whereas the final outcome matches the

overall constraint.

In light of this insight, we reach our second main result which establishes a convergence to perfect

screening. We prove that, even if all stages are subject to the same noise, a multi-stage asymptotic

screening process yields a first-best posterior distribution, as if the screening was preformed with no

noise whatsoever. We refer to such an outcome as perfect screening, and show that standard stationary

strategies, such as a fixed-threshold strategy or a fixed-capacity strategy, lead to a perfect screening

outcome. Note that we obtain this result even when the same noise is used repeatedly, that is, even

if the accuracy along the stages does not improve.

A combination of the results that originate from these two research paths leads to a (somewhat

striking) conclusion: the quality of a screening process, as a function of the number of stages, is not

necessarily monotone. To put it differently, introducing one additional referee or one additional stage

may be detrimental, whereas adding multiple ones would probably improve the screening. In what

follows, we provide the specific details and conditions to support this statement.

1.2 Relation to relevant literature

The accurate position of this work in the literature is anything but trivial. On the one hand, this

work joins the extensive theory of statistical decision making, concerning both dynamic decision prob-

lems [going back to the works of Wald (1939, 1947) and Arrow et al. (1949)] and the comparison of

information structure.2 On the other hand, this study also concerns the theory of information aggre-

gation, which varies from social learning and information cascade to group decisions and committees

of experts.3

Though these two branches of the literature are extensive and thorough, our work precisely fits

2See, among others, Milgrom (1981), Quah and Strulovici (2009), Ganuza and Penalva (2010), Chambers and Healy

(2011), and more recently Athey and Levin (2018) and Lagziel and Lehrer (2020).
3See, e.g., Banerjee (1992), Bikhchandani et al. (1992), Glazer and Rubinstein (1998), Dekel and Piccione (2000),

Ottaviani and Sorensen (2001), Levy (2004), Levy (2007), Visser and Swank (2007), Gershkov and Szentes (2009), among

many others. For a recent extensive survey, see Bikhchandani et al. (2021).
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neither. There are three basic elements that distinguish this research from previous ones. First, our

formulation of screening problems, in the context of statistical decision theory, naturally combines

a capacity constraint that is typically missing from the aforementioned studies [with the exception

of Lagziel and Lehrer (2020)]. This constraint is necessary for our analysis and outcomes. Second,

many of the above-mentioned studies extended the seminal work of Condorcet (1785) by introducing

costly observations and strategic accumulation of information. Our work is more basic in this sense,

because it raises the question of whether another signal is beneficial altogether, irrespective of its

price, and independently of the evaluators’ preferences (thus information cascades and herding are

less relevant in our framework). Third, our framework builds on general, non-atomic distributions

where the classification of a signal as either “true” or “false” is irrelevant. In our model, every signal

provides more information about the actual value, yet as was exemplified in Section 1.1, the signal

might still be detrimental. These stark differences are best exemplified by Bikhchandani et al. (2021),

who state that “In purely individual decision making, an extra signal always makes an agent weakly

better off” (see Section 2.6 therein). Though this statement is completely true for the relevant models

of information aggregation and social learning, one of our main results proves the opposite.

Nevertheless, there are some basic similarities between our study and previous ones. The first,

rather basic similarity, is the fact that our asymptotic analysis yields the first-best screening out-

come. This is also the key insight of Condorcet (1785), with the obvious distinctions from our model:

Condorcet (1785) and subsequent works build on a binary state of the world, a majority rule, and a

necessary condition concerning the informativeness of signals, which are irrelevant in our framework.

Another similarity, mainly related to the research aspect, arises from the studies of Ben-Yashar and

Paroush (2000) and Berend and Sapir (2005), who prove that random committees of at least three

experts outperform a single expert. Yet, the key differences between the models and assumptions

completely change the outcome under our analysis.

A different research field where our results may be of some interest is data analysis and data cleans-

ing. In the realm of statistical power analysis, researchers need to maintain a sufficiently large sample

size to detect an effect of a given size. In this respect, our capacity constraint fits rather naturally.

Our results indicate that reducing the sample size does not necessarily improve the inspection of a

given hypothesis. Though a direct application goes well beyond the scope of this work (and quite

possibility requires a different, extensive study altogether), we do believe that the given results may

be of some importance to this field.

1.3 Structure of the paper

The paper proceeds as follows. In Section 2 we describe the basic model and key definitions. In

Section 3 we present the main results, divided into two subsections: in Subsection 3.1 we compare
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one-stage and two-stage screening processes, and in Subsection 3.2 we carry out an asymptotic analysis

of screening problems. Concluding remarks, including a discussion about cost functions, are given in

Section 4.

2 Preliminaries

Consider a set of elements whose intrinsic values are distributed according to a non-constant random

variable V , referred to as an impact variable. For every i P N, let Ni be a random variable which

defines the additive evaluation errors in stage i, and referred to as the stage-i noise. We generally

assume that all noise variables are unbiased — symmetric about zero and jointly independent of V

and of each other. A capacity p P p0, 1q dictates the proportion of accepted elements. That is, the

screening is constrained by the requirement to accept a fraction p of the proposed elements.

A k-stage screening problem SP “
`

V, tNiu
k
i“1, p

˘

consists of an impact variable V , noise variables

N1, . . . , Nk, and a capacity p. The screening problem evolves as follows. Denote V1 “ V . In each stage

i ě 1, the DM observes Vi `Ni and fixes a threshold ti P R, so that

Vi`1 „ Vi|tVi `Ni ě tiu, (1)

where

PrpVi `Ni ě tiq “ pi and
k
ź

i“1

pi “ p. (2)

In words, in every stage i, the DM observes the noisy valuation Vi`Ni and fixes a screening threshold

ti, so that only the elements whose noisy valuations are at least ti proceed to the subsequent stage. In

every stage i, the DM maintains a capacity of pi P r0, 1s to support an overall capacity of p “
śk
i“1 pi.

Note that we also allow for infinite screening problems, denoted SP “ pV, tNiu
8
i“1, pq, by taking an

unbounded number of stages.

Given SP “
`

V, tNiu
k
i“1, p

˘

, a strategy τ is a sequence of threshold values τ “ pt1, . . . , tkq P Rk.
Let VSPpτq denote the post-screening conditional distribution of the accepted elements’ values. That

is, VSPpτq “ Vk`1 where Vk`1 is defined according to Eq. (1), Eq. (2), and τ . The main goal of the

DM is to maximize the expected value ErVSPp¨qs of accepted elements.

For tractability, we make the following assumptions: (i) every variable X (of the above) has a

density function fX and a CDF FX that are fully supported (namely, fX is strictly positive) on some

bounded interval, denoted rX,Xs; and (ii) unless stated otherwise, all noises are i.i.d. random variables.

As will later become evident, one can relax these assumptions (e.g., by varying the noises along the

stages to be more informative in the sense of Lehmann (1988), or by using a contracting mapping as in

Lagziel and Lehrer (2020); see Subsection 3.2 therein) and still maintain our key insights. To be clear,
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we do divert from the second assumption, regarding i.i.d. noises, in the first part of our analysis when

we examine a two-stage screening with a more informative second stage, relative to the first stage.

2.1 Stationary strategies

Our analysis is based on threshold strategies, and in the context of dynamic screening, one can also

consider two types of stationary strategies: fixed-threshold strategies and fixed-capacity strategies.

Formally, fix a k-stage screening problem SP, and consider the following two stationary strategies.

The first strategy, referred to as the fixed-threshold strategy, dictates that τ “ pt, . . . , tq, which means

that all threshold values, throughout the k stages, are identical. By continuity, one can fix the (unique)

threshold value t to maintain the capacity constraint p, thus the strategy is well defined. The second

strategy, referred to as the fixed-capacity strategy, dictates that pi “ p1{k for every stage 1 ď i ď k.

That is, all threshold values are fixed so that, in every stage, a fraction p1{k of the elements being

evaluated proceed to the subsequent stage. We shall use these strategies in both parts of our analysis.

The first part of our analysis also requires a precise definition concerning stochastic dominance of

one screening process over another. The following definition captures this notion.

Definition 1. For every i “ 1, 2, consider an i-stage screening problem SPi with a specific strategy

τi. We say that one-stage screening under SP1 given τ1 stochastically dominates two-stage screening

under SP2 given τ2 if VSP1pτ1q first-order stochastically dominates VSP2pτ2q.

We should clarify that a one-stage screening problem requires no specification regarding the strat-

egy, since the relevant threshold is well defined and unique. Therefore, henceforth we will not specify

the type of the one-stage strategies.

3 Main results

Our analysis consists of two parts: in Subsection 3.1 we compare one-stage screening with a two-stage

process, and in Subsection 3.2 we adopt an asymptotic approach by focusing on a dynamic screening

while substantially increasing the number of stages.

3.1 A comparison of one-stage and two-stage screening

Our comparison of a one- and a two-stage screening processes consists of four results. First, in Theorem

1, we consider a two-stage screening performed under a stationary, fixed-threshold strategy where all

noises are identically distributed. Under these conditions we prove that for a sufficiently low acceptance

rate (i.e., elite screening) one-stage screening stochastically dominates the two-stage process. Next,

we extend this result in Proposition 1 and in Proposition 2 by omitting the stationary fixed-threshold
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condition and by allowing the noises’ distributions to vary between the two stages. Lastly, in Theorem

2, we show how one can revert these results by adopting a sufficiently high capacity constraint, i.e.,

through low-level screening.

We start with Theorem 1, which relates to i.i.d. noises along with an implementation of a stationary,

fixed-threshold strategy in the two-stage process. In other words, Theorem 1 captures the alternative

interpretation (for dynamic screening) of using two evaluators instead of one, when both are subjected

to the same noise and use the same screening strategy. The theorem states that, for a sufficiently low

capacity, namely a very restrictive screening, it is better to use one stage/evaluator instead of two.

(All proofs are deferred to the Appendix.)

Theorem 1. For every impact and noise variables V and N , there exists p0 ą 0 such that for every

capacity p ă p0, one-stage screening under pV,N, pq stochastically dominates two-stage screening under

pV, tN,Nu, pq given a stationary fixed-threshold strategy.

Though the proof is given in the Appendix, we wish to provide here some intuition on its structure

and technique to better understand the result. In the proof we consider the probability density

functions pfV1 , fV2q of the one- and the two-stage screening processes, respectively. In order to preserve

the capacity constraint, the two-stage process must follow a lower threshold value, so that fV2 is

supported on a larger interval and some lower values are generated with positive probabilities, whereas

similar values are eliminated under the one-stage screening. So, to establish (first-order) stochastic

dominance, we prove that the graphs of the two densities intersect only once. Graph paq in Figure 2

provides some intuition for this.

Note that that two-stage screening in Figure 2 translates to a parabolic graph, rather than a

straight line, by the fact that the probability of passing two independents tests is the product of two

probabilities, one for each stage. Moreover, notice how the capacity plays a key role in this analysis, as

stricter screening (namely, a smaller capacity p) increases the threshold values and shifts the two curves

to the right, thus maintaining the single crossing property and the dominance of one-stage screening

over the two-stage process. On the other hand, a more lenient screening (i.e., a higher capacity p)

reduces the threshold criteria and shifts both curves to the left. This allows the RHS crossing (of the

two curves) to emerge, while eliminating the LHS crossing from the support of V , so that two-stage

screening dominates the one-stage process. (This is the main result of Theorem 2 below.)

Going beyond the technicalities, Theorem 1 is based on the idea that an additional stage, under

an overall capacity constraint, must be accompanied with lower thresholds, relative to the one-stage

screening. In the second stage this reduction poses a problem since the smaller sample size augments

the noise’s effectiveness in distorting the underlying distribution of values. That is, once lower values

pass through the first stage, out of the two-stage process, they have a higher probability to pass
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One-stage versus two-stage screening on the pV,Nq-plain
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Figure 2: Both graphs describe a comparison between one- and two-stage screening: Graph paq provides such a

comparison under a low acceptance rate (a small p), whereas Graph pbq provides a similar comparison under a high

acceptance rate (i.e., a high p). Under the one-stage screening, depicted by the straight and solid (blue) lines t1, only

grey areas pass the screening. Under the two-stage screening, depicted by the parabolic and dashed (red) lines t2, the

light grey area B is eliminated, while all elements in the white area A pass the screening.

through the second stage as well, since the noise is relatively more effective, given the smaller sample

size. This does not happen in the one-stage process, since these lower values are eliminated completely

due to the higher threshold.

Remark 1. One can extend the result of Theorem 1 beyond the assumptions of bounded supports and

positive densities. For example, Theorem 1 also holds for noises whose probability density functions

monotonically diminish from a certain point, or even for noises with unbounded supports whose prob-

ability density functions decrease sufficiently fast. By its technical nature, the full characterization is

left for future research.

The next two propositions extend Theorem 1 in two ways. Proposition 1 accounts for non-

stationary strategies while maintaining i.i.d. noises, and Proposition 2 extends Proposition 1 by also

accounting for different noises. These two extensions require some limitations concerning the two-stage

screening strategy. Specifically, by allowing any two-stage strategy, one can effectively converge to a

one-stage process if one threshold is sufficiently low, which would make it redundant. Moreover, if the

noise in the second stage is a contraction of the noise in the first stage, then we know that doing most

of the screening in the second stage will guarantee a better expected outcome compared to a one-stage

process. Therefore, we introduce the following definitions of distinct two-stage strategies.
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Definition 2. Fix ε P p0, 1{2q and a two-stage screening problem SP2 given a strategy τ “ pt1, t2q.

Note that τ defines two specific capacities pp1, p2q. We say that τ is ε-distinct (from a one-stage

strategy) if max tp1, p2u ă 1´ ε. In addition, τ is fully ε-distinct if ε ă p2 ă 1´ ε.

In simple terms, a two-stage screening strategy is distinct from a one-stage strategy if no stage

is redundant in the sense that it screens less than a proportion ε of the elements. Moreover, a fully

distinct strategy sustains a constraint on the second stage such that, on the one hand, the second

stage is not redundant and, on the other hand, not all the screening occurs in the second stage. As

stated, these constraints are necessary, otherwise one could effectively eliminate one stage from the

two-stage process and generate results that are at least as good as in one-stage screening.

Though restrictive, there is a simple reasoning as to why the mentioned limitations are rather

natural and evident. Generally speaking, the advanced stages in many screening processes are more

accurate, therefore more costly. For example, interviews with chief executives or seminars in academic

institutions consume a lot of time and effort from busy, time-constrained individuals. It would be very

costly to conduct most of the screening in these stages rather than eliminate most of the applicants

in preliminary stages., e.g., when screening CVs. So, one must limit the capacity of elements that

reach these advanced stages, and Definition 2 provides such a limitation. We discuss this aspect more

broadly in Section 4.

The following Proposition 1 shows that even if one should divert from stationary fixed-threshold

strategies, the dominance of one-stage screening over the two-stage process remains valid, provided

that the strategy is ε-distinct and the capacity is sufficiently small.

Proposition 1. Fix ε P p0, 1{2q. For every impact and noise variables V and N , there exists pε ą 0

such that for every capacity p ă pε, one-stage screening under pV,N, pq stochastically dominates two-

stage screening under pV, tN,Nu, pq given an ε-distinct strategy.

The next proposition shows that one can also extend Proposition 1 to different noises in the two-

stage process. For this to hold, we consider a fully distinct strategy such that the second stage does

not account for most of the process.

Proposition 2. Fix ε P p0, 1{2q, an impact variable V , and two noise variables N1 and N2. There

exists pε ą 0 such that for every capacity p ă pε, one-stage screening under pV,N1, pq stochastically

dominates two-stage screening under pV, tN1, N2u, pq given any fully ε-distinct strategy.

Let us emphasize that, in Proposition 2, we do not limit the distribution of N2 relative to N1,

other than the general condition of a strictly positive density on some interval. This is more than a

mere technicality, since it shows that the additional stage can still distort the screening, even if the

added stage is very accurate (i.e., even if the noise is relatively mild). In other words, one does not
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need to devise esoteric distributions to exemplify our results, but simply extend the screening to the

top of the distribution.

On the other hand, if the decision maker wishes to extract only a small portion from the bottom

of the distribution, then two-stage screening becomes superior relative to the one-stage process. The

intuition is that once the sample size in both stages is significantly large, the noises’ influence becomes

limited, which makes the additional stage worthwhile. The following theorem is a mirror image of

Theorem 1 for cases in which the decision maker focuses on low-level screening (i.e., whenever the

capacity is relatively high), showing that two-stage screening dominates the one-stage process.

Theorem 2. For every impact and noise variables V and N , there exists p0 ą 0 such that for every

capacity p ą p0, two-stage screening under pV, tN,Nu, pq given a stationary fixed-threshold strategy

stochastically dominates one-stage screening under pV,N, pq.

The combination of Theorem 1 and Theorem 2 implies that the superiority of one screening method

over another, varying in the number of stages, greatly depends on the capacity constraint. The

transition from a sufficiently low to a sufficiently high capacity, given a stationary fixed-threshold

strategy, exemplifies how an additional screening stage changes from a burden to an advantage. A

question that remains for future research is whether this transition occurs at a single point such that

one-stage screening is superior below a given capacity and inferior above it, or whether this transition

occurs in multiple points.

We now proceed to the second part of our analysis to prove that adding a considerable number of

stages strictly improves a screening process.

3.2 Convergence to perfect screening

The results in Section 3.1 may provide the false impression that dynamic screening is inefficient. In this

section we prove that this conclusion is false by showing that a multi-stage process eventually yields

the first best outcome. Theorem 2 provides some intuition for this, since a sufficiently high capacity

ensures that additional stages only improve the screening, and that is indeed the case when using

multiple stages. We establish this conclusion through two supporting results. The first, Proposition

3, concerns infinite screening problems and shows that any increasing strategy (i.e., a strategy under

which threshold values can only increase along the stages) generates the first-best outcome. The

second, Theorem 3, shows that the two previously mentioned stationary strategies generate posterior

distributions that converge, in distribution, to the first best result.
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3.2.1 A Perfect screening strategy

In every screening problem, the best the DM can strive for is a screening procedure that yields a result

as if there is no noise whatsoever — a result that we refer to as a perfect screening. Formally, given

a screening problem SP, a strategy τ yields a perfect screening if ErVSPpτqs “ ErV |V ě vps, where

vp denotes the p-quantile of V (i.e., PrpV ě vpq “ p). In other words, a perfect screening strategy

induces an expected value which is equivalent to a screening without noise, while maintaining the

same capacity constraint. Note that a perfect screening of τ , under a capacity of p, entails that the

two variables VSPpτq and V |tV ě vpu are identically distributed.

Starting with infinite screening problems, we say that an infinite strategy τ “ pt1, t2, . . . q P R8 is

increasing if tk`1 ě tk for every k ě 1. That is, an increasing strategy entails that the screening along

the stages becomes stricter. The following proposition shows that, in every infinite screening problem,

every increasing strategy produces a perfect screening.

Proposition 3. In an infinite screening problem, every increasing strategy induces a perfect screening.

The motivation behind the statement and proof of Proposition 3 originates from the fact that

suboptimal elements are discarded with some “patience” on the side of the DM. So even if the noise is

rather disruptive for screening, for example, an almost-binary noise with a large variance,4 a perfect

screening remains feasible since suboptimal elements are slowly screened throughout the stages.

3.2.2 Stationary strategies converge to perfect screening

After establishing that every infinite and increasing strategy yields a perfect screening, one may want

to consider a more practical finite set-up. In practice, whether we consider screening job applicants

or “cleansing” datasets, decision makers cannot feasibly commit to infinite screening stages, which

makes the finite set-up the only practical choice. In such scenarios, a basic question is whether simple

finite strategies converge to a perfect screening. In this section we tackle this question and provide

two stationary strategies that converge to a perfect screening.

As already defined in Subsection 2.1, we consider the fixed-threshold strategy which maintains the

same threshold value throughout the stages, and we consider the fixed-capacity strategy which dictates

the same capacity in all stages. For each of these strategies we shall prove that the induced distribution

converges, in distribution, to a perfect screening outcome. More formally, we say that a stationary

strategy τ converges to a perfect screening if, for every k-stage screening problem SP “ pV, tNuki“1, pq,

we have that VSPpτq
d
ÝÝÑ V |tV ě vpu as k Ñ8. In light of Proposition 3, note that the fixed-capacity

strategy does not converge to an infinite increasing strategy. In fact, the limit of the fixed-capacity

strategy is not well defined for an infinite screening problem with a capacity constraint of p P p0, 1q.

4This type of noises (and others) are prone to screening biases; see Lagziel and Lehrer (2019) for more details.
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Therefore, establishing its convergence to a perfect screening outcome requires a separate approach

and proof, given in the following Theorem 3.

Theorem 3. The fixed-threshold strategy and the fixed-capacity strategy converge to a perfect screening.

The use of stationary strategies accommodates a gradual screening process such that only con-

siderably low valuations are eliminated, while most elements proceed to subsequent stages. Though

one can devise different non-stationary strategies that converge to a perfect screening, it is clear that

not all strategies will do so. For example, consider a screening strategy under which the first-stage

threshold is too high, for example, t1 “ vp ` δ for some small δ ą 0, such that the capacity constraint

is not violated, yet some values above vp are partially eliminated in the first stage. In such a case,

the thresholds in subsequent stages must be lower, and the resulting posterior distribution will not

converge to V |tV ě vpu.

4 Concluding remarks

4.1 The cost of screening

Though our comparison of screening processes does not explicitly incorporate a cost function, we do

not remain naive for this consideration. The basic intuition is that additional stages and improved

accuracy are more costly, so one should balance the two criteria with the superior expected results. For

example, consider a DM who fixes a screening process given that advanced stages are more accurate

(under some metric) than previous ones. A cost-minimization analysis would typically dictate that

most of the screening, in terms of capacities, is performed in preliminary stages rather than in advanced

ones. In other words, since the screening becomes more costly, the DM limits the mass of elements

that reaches advanced stages. Therefore, one can focus on the capacities as an implicit proxy/measure

for the needed stages and accuracy. Interestingly, our results in Subsection 3.1, namely Theorem 1

and Propositions 1 and 2, implicitly contain this feature even without an explicit cost function.

More formally, consider a k-stage screening process with the following, illustrative cost function
ř

i αi log
´
ś

jďi´1 pj
p

¯

, where p0 “ 1 and αi`1 ě αi ą 0 are accuracy indices for stages i ` 1 and i,

respectively (i.e., a higher α indicates a more informative screening under some metric, as in Lehmann

(1988) or Lagziel and Lehrer (2020), among others). The intuition behind this function is that the cost

of every stage i increases with respect to: (i) the informativeness αi; and (ii) the mass of the inspected

elements
śi´1
j“0 pj . For simplicity, consider k “ 2 and assume the DM is bounded by a binding budget

constraint C ą 0. So, to meet the condition α1 log
´

1
p

¯

` α2 log
´

p1
p

¯

ď C, the DM must ensure p1

is sufficiently close to p, which in turn pushes p2 towards 1. It is straightforward to verify that this

constraint becomes even more binding as α2 increases.
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One could also take a different perspective altogether, and consider a set-up where the accuracy

of every stage/test, and therefore the cost, depend directly on the induced capacities. For example,

consider the extreme case where an examination is performed in stage i under a capacity constraint of

pi “ 1. What would be the cost in this case? Evidently, the cost should be zero because, effectively,

there is no screening. Thus, one can consider another illustrative cost function of the form ´
ř

i logppiq,

so that the cost of not preforming a screening is zero (that is, logppiq “ 0 if and only if pi “ 1), and

it increases as the capacity decreases. In this example, it is clear that ´
ř

i logppiq “ ´ logppq and the

cost depends only on the overall capacity constraint. In such cases, the DM would be solely concerned

with comparing the outcomes of the one-stage and the k-stage screening processes.

4.2 Summary

In this paper we presented an analysis of dynamic screening, showing that the quality of the screening

process is not necessarily a monotone function in the number of stages. Specifically, one can add a

single screening stage such that the overall quality of the screening process decreases, whereas a few

additional stages significantly improve the process. There are a few natural questions that arise from

our analysis. First, what exactly occurs when reverting from a single-stage process to a high number

of stages? It seems reasonable that first-order stochastic dominance does not revert in a single stage,

but that there is a slow transition from one posterior distribution to another. Identifying the posterior

distribution’s evolution as a function of the number of stages is an important follow-up question,

especially for applicative purposes.

Another rather difficult question to tackle in future research relates to the nature of the noise

throughout the process. In our framework, noises are given exogenously, while in practice noises are

endogenously determined according to the the capacities and feasibility constraints (technical and

monetary). Since the technical complexity of such questions is potentially overwhelming, it might be

essential (and even more interesting) to adopt a combined empirical-theoretical perspective, where the

assumptions and theoretical analysis are based on actual data.
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A Appendices

A.1 Proof of Theorem 1

Proof. Fix V,N , and some capacity p P p0, 1q. Denote the one-stage and the two-stage screening

problems by SPi “ pV, tNuik“1, pq, where i “ 1, 2 respectively. Denote the screening strategy (and

threshold) of SP1 and SP2 by τ1 “ pt1q and τ2 “ pt2, t2q, respectively. Recall that we consider a

two-stage screening process with a fixed-threshold stationary strategy. Note that

FV1ptq “ Pr pV ď t|V `N ě t1q

“ 1
pPr pV ď t, V `N ě t1q

“ 1
p

ż t

´8

fV pxqPr pN ě t1 ´ xq dx.

Thus,

fV1ptq “ 1
pfV ptqPr pN ě t1 ´ tq

“

#

1
pfV ptqG pt1 ´ tq , for t1 ´N ď t ď V ,

0, otherwise,
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where Gpxq “ PrpN ě xq is a differentiable decreasing function, such that Gpxq “ 0 if x ě N , and

Gpxq “ 1 if x ď N . Similarly,

fV2ptq “ 1
pfV ptqG

2 pt2 ´ tq

“

#

1
pfV ptqG

2 pt2 ´ tq , for t2 ´N ď t ď V ,

0, otherwise.

The capacity constraint implies that t2 ă t1, and both values converge to V `N as pÑ 0. So, we will

prove that V1 first-order stochastically dominates (FOSD) V2 by showing that the exists a range of

values close to V `N (equivalently, a range for p close to zero), such that for every t1 and every t2 ă t1

in that interval, there exists a unique (interior) point t P pt1´N,V q such that Gpt1´ tq “ G2pt2´ tq,

namely a single crossing between the two densities.

To simplify the analysis, define the function Jpxq to be the linear extension of G outside the interval

rN,N s. Specifically,

Jpxq “

$

’

’

&

’

’

%

Gpxq, for x P rN,N s,

dN
`

x´N
˘

, for x ě N,

dN px´Nq ` 1 for x ď N,

where dN “ lim
xÑN

´
Gpxq´GpNq

x´N
and dN “ limxÑN`

Gpxq´GpNq
x´N . Thus, J 1pNq ă 0 is well defined and

strictly negative, since G is strictly decreasing on rN,N s, by the assumption that all variables have

strictly positive densities on their compact supports.

Define the function

Hpt, t2q “ Jpt1 ´ tq ´ J
2pt2 ´ tq.

With a slight abuse of notation, we regard t2 as a variable, independent of either t1, or p. Note that

H is continuously differentiable, Hpt1 ´ N, t1q “ 0, and H 1tpt1 ´ N, t1q “ ´J
1pNq ` 2JpNqJ 1pNq “

´J 1pNq ą 0. Thus, we can use the implicit function theorem to establish that there exist a continuously

differentiable function T p¨q defined on an open interval I0 around t1, such that HpT pt2q, t2q “ 0 for

every t2 P I0, and T pt1q “ t1 ´N .

Using this result, let us now prove that there exists a neighbourhood I1 “ pt1 ´ ε, t1 ` εq Ď I0,

where ε ą 0, such that for every t2 P I1, there exists a unique solution t P T pI1q for Hpt, t2q “ 0.

Clearly, a solution exists according to the previous result, so we can assume, to the contrary, that

for every interval I1 Ď I0 there exists t2 P I1 so that the equation Hpt, t2q “ 0 has at least two

distinct solutions in the interval T pI1q. If that is indeed the case, then by the mean-value theorem,

there exists a point t1 P T pI1q such that H 1tpt
1, t2q “ 0. Since H is continuously differentiable, the

equality H 1tpt
1, t2q “ 0 must hold for ε Ñ 0, which implies that t1 Ñ t1 ´ N and t2 Ñ t1. However,

H 1tpt1 ´N, t1q “ ´G
1pNq ą 0 as already stated, and so we get a contradiction.
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To conclude, we proved that there exists an open interval I1 “ pt1 ´ ε, t1 ` εq such that for every

t2 P I1 there exists a unique solution t P T pI1q for Jpt1´tq “ J2pt2´tq, and this solution is continuously

differentiable in t2. We emphasize that both Jp¨q and Gp¨q are independent of t1 and t2, and so is the

length of I1 (and I0).

We now revert to our original notations where t1 and t2 sustain any given capacity p P p0, 1q in the

one-stage and two-stage screening processes, respectively. Since t2 ă t1 and both values simultaneously

converge to V `N when pÑ 0, one can take p0 ą 0 such that pt2 ´N,V q Ă I1, for every p P p0, p0q.

Moreover, the fact that both densities equal zero at the LHS of their supports (and V2 ă V1) suggests

that fV2ptq ą fV1ptq, in some rt2 ´N, tpq, where tp is the single-crossing point for the chosen capacity.

This single-crossing point exists due to our construction, and due to the fact that both screening

processes must obey the same capacity constraint (otherwise, fV2ptq ą fV1ptq for every t in both

supports). In other words, for every t P rt2 ´ N,V s, it follows that Gpt1 ´ tq ¿ G2pt2 ´ tq and

fV1ptq ¿ fV2ptq, for t ¿ tp. This establishes that V1 (first-order) stochastically dominates V2.

A.2 Proof of Proposition 1

Proof. This proof follows a construction and arguments similar to those in the proof of Theorem 1.

Fix ε ą 0, random variables pV,Nq, and some capacity p P p0, εq. Denote the one-stage and the two-

stage screening problems by SPi “ pV, tNu
i
k“1, pq, where i “ 1, 2, respectively. Denote the screening

strategy (and threshold) of SP1 and SP2 by τ1 “ pt1q and τ2 “ pt12, t
2
2q, respectively. With no loss

of generality (as the stages are interchangeable), we assume that t12 ą t22. Similarly to the proof of

Theorem 1, we have

fV1ptq “

#

1
pfV ptqG pt1 ´ tq , for t1 ´N ď t ď V ,

0, otherwise,

where Gpxq “ PrpN ě xq is a differentiable and decreasing function, such that Gpxq “ 0 if x ě N ,

and Gpxq “ 1 if x ď N , and

fV2ptq “

#

1
pfV ptqG

`

t12 ´ t
˘

G
`

t22 ´ t
˘

, for t12 ´N ď t ď V ,

0, otherwise.

The capacity constraint implies that t12 “ maxtt12, t
1
2u ă t1, which suggests that V2 ă V1 assuming

that ε and p are small such that V2 ą V (that is, assuming that the posteriors’ lower bounds are

strictly above the minimal level V ). Note that V1 Ñ V and V2 Ñ V as p Ñ 0, whereas V2 “ V1 “ V

independently of p. Namely, to reduce the capacity towards zero, the thresholds t1 and t12 need to

increase towards the upper bound of V ` N . Therefore, as established in the proof of Theorem 1,

the graphs fV1p¨q and fV2p¨q must intersect in at least one interior point, otherwise fV2ptq ą fV1ptq for

every t P pt12, V q, which violates the capacity constraint for one of the variables.
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We will prove that V1 FOSD V2 by showing that there exists a range of values for t1 close to V `N

(equivalently, a range for p close to zero), such that for every t12 ă t1 in that interval, there exists

exactly one (interior) point t P pt1 ´ N,V q so that Gpt1 ´ tq “ Gpt12 ´ tqGpt22 ´ tq, a single crossing

between the two densities.

Consider the function Hpt, t12|t1, t
2
2q “ Gpt1 ´ tq ´ Gpt12 ´ tqGpt22 ´ tq. Again, with some abuse of

notation, we allow for t1 and t12 to vary, independently of p. Assume, to the contrary, that for every

interval I “ pV `N ´ c, V `Nq where c ą 0 and t1 P I, there exist t12 P pV `N ´ c, t1q and a t22 ă t12

which maintain the ε-distinct property, so that the equation Hpt, t12|t1, t
2
2q “ 0 has at least two distinct

solutions w.r.t. t in the interval I1 “ pt1 ´N,V q. The fact that t22 maintains the ε-distinct property

suggests that p2 “ PrpX ` N ą t22q ă 1 ´ ε, where X „ V |tV ` N ě t12u. Thus, there exists δ ą 0

such that

t22 ą X `N ` δ “ t12 ´N `N ` δ,

since X “ t12 ´N , and

Gpt22 ´ t1 `Nq ă Gpt12 ´ t1 `N ` δq. (3)

By the mean-value theorem, there exists a point t1 P I1 such that H 1tpt
1, t12|t1, t

2
2q “ 0. Since H is

continuously differentiable, the equality H 1tpt
1, t12|t1, t

2
2q “ 0 must hold for c Ñ 0, or equivalently, for

t1 Ñ t1 ´N and t12 Ñ t1. However,

H 1tpt1 ´N, t1|t1, t
2
2q “ ´G1pNq `G1pNqGpt22 ´ t1 `Nq `GpNqG

1pt22 ´ t1 `Nq

“ ´G1pNq `G1pNqGpt22 ´ t1 `Nq

ą ´G1pNq `G1pNqGpt12 ´ t1 `N ` δq ą 0,

where the first inequality follows from Eq. (3) and the second inequality holds because t12 is arbitrarily

close to t1 and Gpt12 ´ t1 `N ` δq ă 1.

To conclude, we proved that there exists an open interval I “ pV ` N ´ c, V ` Nq, where c ą 0

and t1 P I, such that for every t12 P pV `N ´ c, t1q and t22 ă t12 which is ε-distinct, there exists a unique

solution t P pt1´N,V q such that Gpt1´ tq “ Gpt12´ tqGpt
2
2´ tq. In other words, there exists pε ą 0 so

that for every p P p0, pεq, the densities fV1ptq and fV2ptq coincide exactly once on their support (while

V2 ă V1), thus establishing that V1 (first-order) stochastically dominates V2, as needed.

A.3 Proof of Proposition 2

Proof. This proof follows the pattern of the proof of Proposition 1, with the additional requirement

to show that the lower bound V2 of the conditional impact variable under the two-stage screening is

indeed lower than the one under the one-stage screening, i.e., V2 ă V1.
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Fix ε P p0, 1q and two screening problems, SP1 “ pV, tN1u, pq and SP2 “ pV, tN1, N2u, pq, where

p ă ε. We start by proving that V2 ă V1. For this purpose consider the following claim

Note that τ “ pt12, t
2
2q is fully ε-distinct, thus p2 P pε, 1 ´ εq while p1 ¨ p2 “ p. Therefore, if p is

sufficiently small (close to zero; specifically, p ! ε), then p1 Ñ 0 and t12 Ñ V `N . So, from some point

onward (namely, as long as t12 is sufficiently close to V `N1), the support of V |tV `N1 ě t12u shrinks

towards V , and according to Lemma 1 below, this suggests that t22 is bounded away from X ` N1,

where x „ V |tV `N1 ě t12u. In other words, for every sufficiently small p, the lower bound V2 of V2 is

t12 ´N1. Recall that t12 ă t1 (otherwise, p1 ă p), so we conclude that for sufficiently small capacities

V2 ă V1, as already stated. So, from this point onward, consider p ă ε such that |t12 ´ pV `N1q| ă δ,

where PrpN1 ě N1 ´ δq ă ε for every fully ε-distinct two-stage screening strategy.

A similar computation to the one presented in the proofs of Theorem 1 and Proposition 1 yields

fV1ptq “

#

1
pfV ptqG1 pt1 ´ tq , for t1 ´N1 ď t ď V ,

0, otherwise,

and

fV2ptq “

#

1
pfV ptqG1

`

t12 ´ t
˘

G2

`

t22 ´ t
˘

, for t12 ´N1 ď t ď V ,

0, otherwise,

where Gipxq “ PrpNi ě xq for i “ 1, 2, with the same properties as discussed in the previous proofs.

The two screening processes can simultaneously support the capacity p only if the two densi-

ties intersect at least once. Let us now show that they do so exactly once. Consider the function

Hpt, t12|t1, t
2
2q “ G1pt1´ tq ´G1pt

1
2´ tqG2pt

2
2´ tq. With some abuse of notation, we allow for t1 and t12

to vary, independently of p, while t22 maintains the fully ε-distinct property.

Assume, to the contrary, that for every interval I “ pV `N1 ´ c, V `N1q, where c ą 0 and t1 P I,

there exists a t12 P pV ` N1 ´ c, t1q and a t22 ă t12 which maintains the fully ε-distinct property, such

that the equation Hpt, t12|t1, t
2
2q “ 0 has at least two distinct solutions w.r.t. t in the interval I1 “

pt1´N1, V q. By the mean-value theorem, there exists a point t1 P I1 so that H 1tpt
1, t12|t1, t

2
2q “ 0. Since

H is continuously differentiable, the equality H 1tpt
1, t12|t1, t

2
2q “ 0 must hold for cÑ 0, or equivalently,

for t1 Ñ t1 ´N1 and t12 Ñ t1. However,

H 1tpt1 ´N, t1|t1, t
2
2q “ ´G11pN1q `G

1
1pN1qG2pt

2
2 ´ t1 `N1q `G1pN1qG

1
2pt

2
2 ´ t1 `N1q

“ ´G11pN1q `G
1
1pN1qG2pt

2
2 ´ t1 `N1q ą 0,

where the inequality follows from fact that τ “ pt12, t
2
2q is a fully ε-distinct strategy, and as such

G2pt
2
2 ´ t1 `N1q is bounded away from 0 and 1. Hence, H 1tp¨, t

1
2|t1, t

2
2q ą 0 remains strictly positive as

p tends to zero, and there is a single crossing between the two densities fV2 and fV1 . Since V2 ă V1,

we conclude that V1 FOSD V2, as needed.
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Lemma 1. For every noise variable N and every ε ą 0, there exists c ą 0 such that for every impact

variable V supported on an interval I of length c1 ă c, the inequality PrpV `N ě tq ą ε implies that

t ă V `N .

Proof. Fix a noise variable N . Take N0 P SupppNq such that PrpN ě N0q “ ε. Fix c “ N ´N0

and fix a P R. Consider the interval I “ ra, a ` N ´ N0s and an impact variable V supported on I.

Take t “ V `N “ a`N and compute PrpV `N ě tq as follows:

PrpV `N ě a`Nq “

ż a`N´N0

a
fV pxqPr

`

N ě a`N ´ x
˘

dx

ă

ż a`N´N0

a
fV pxqPr pN ě N0q dx

“ ε

ż a`N´N0

a
fV pxqdx “ ε.

Thus, for every V supported on an interval whose length is N ´N0, the inequality PrpV `N ě tq ą ε

implies that t ă V ` N . Since the same computation holds for any interval of length smaller than

N ´N0, the statement holds.

A.4 Proof of Theorem 2

Proof. Fix V,N , and a capacity p ą PrpV `N ą mintV `N,V `Nuq. For every i “ 1, 2, denote the

i-stage screening problem by SPi “ pV, tNu
i
k“1, pq, and denote the screening strategy and threshold

of SP1 and SP2 by τ1 “ pt1q and τ2 “ pt2, t2q, respectively. Note that for the given capacity (and

for higher capacities as well), t1 ă mintV `N,V `Nu. In addition, we know that t2 ă t1 and both

thresholds converge to V `N as pÑ 1.

Consider the construction presented in the proof of Theorem 1. Under SP1 we get

fV1ptq “

$

’

’

&

’

’

%

1
pfV ptqG pt1 ´ tq , for V ď t ď t1 ´N,
1
pfV ptq, for t1 ´N ď t ď V ,

0, otherwise,

where Gpxq “ PrpN ě xq, and under SP2 we get

fV2ptq “

$

’

’

&

’

’

%

1
pfV ptqG

2 pt2 ´ tq , for V ď t ď t2 ´N,
1
pfV ptq, for t2 ´N ď t ď V ,

0, otherwise,

Since t2 ă t1 along with the condition that densities are strictly positive, we can deduce that fV2ptq ě

fV1ptq for every t P pt2´N,V q, and the inequality is strict for every t P pt2´N, t1´Nq. Thus, we can
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establish the stochastic dominance of V2 over V1 by showing that there is a single crossing between

the two densities in the interval pV , t2 ´Nq.

The fact that at least one crossing exists is trivial due to the capacity constraint. Thus, let us

assume, by contradiction, that there is more than one crossing independently of the high capacity p.

That is, we assume that for every t1 ă mintV `N,V `Nu, there exists t2 P pN `V , t1q such that the

equation Hpt|t1, t2q “ Gpt1 ´ tq ´G
2pt2 ´ tq “ 0 has two solutions in the interval pV , t2 ´Nq.

Similarly to the proof of Theorem 1, the mean-value theorem ensure that there exists t1 P pV , t2´Nq

such that H 1pt|t1, t2q “ ´G
1pt1 ´ tq ` 2Gpt2 ´ tqG1pt2 ´ tq “ 0. By continuity, this holds for every t1

and t2 close to V `N , so we can take the limit ti Ñ V `N and t1 Ñ V , which yields

0 “ ´G1pNq ` 2GpNqG1pNq “ ´G1pNq ` 2G1pNq “ G1pNq ă 0;

we reached a contradiction.

Therefore, there exists p ą PrpV `N ą mintV `N,V `Nuq such that the densities fV2ptq and fV1ptq

intersect only once in the interval pV , t2 ´ Nq, and this establishes that V2 first-order stochastically

dominates V1, as needed.

A.5 Proof of Proposition 3

Proof. Fix an infinite screening problem SP “ pV,N, pq with an increasing strategy τ “ pt1, t2, . . . q.

The strategy τ maintains, by definition, the stated capacity p P p0, 1q. Therefore, tk ď V ` N for

every k. So, the sequence pt1, t2, . . . q converges to some t8 P R.

Consider the stage-k conditional distribution of V in some t P R, denoted FVkptq. Clearly,

FVkptq “ Pr pVk´1 ď t|Vk´1 `Nk´1 ě tk´1q

“ 1
pk

Pr pVk´1 ď t, Vk´1 `Nk´1 ě tk´1q

“ 1
pk

ż t

´8

fVk´1
psqPr pNk´1 ě tk´1 ´ sq ds

“ 1
pk

ż t

´8

fVk´1
psqPr pN ě tk´1 ´ sq ds.

Thus,

fVkptq “ 1
pk
fVk´1

ptqPr pN ě tk´1 ´ tq

“ 1
pk´1pk

fVk´2
ptqPr pN ě tk´2 ´ tqPr pN ě tk´1 ´ tq

“ 1
śk

i“1 pi
fV ptq

k
ź

i“1

Pr pN ě ti ´ tq ,

and

fVSPpτqptq “
1
pfV ptq

8
ź

i“1

Pr pN ě ti ´ tq .
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Fix t P R and recall that ptiqiPN converges monotonically to t8. If t ă t8 ´N , then there exists

N0 such that t ă ti ´N for every i ą N0, and Pr pN ě ti ´ tq ă 1. Hence,
ś8
i“1 Pr pN ě ti ´ tq “ 0.

Otherwise, t ě t8´N , and t ě ti´N for every i P N. This implies that Pr pN ě ti ´ tq “ 1 for every

i P N, and
ś8
i“1 Pr pN ě ti ´ tq “ 1. We thus conclude that

fVSPpτqptq “

#

0, for every t ă t8 ´N,
1
pfV ptq, for every t ě t8 ´N.

Clearly,
ż

R
fVSPpτqptqdt “

ż V

t8´N

1
pfV ptqdt “ 1,

so t8 “ vp `N , and τ induces a perfect screening.

A.6 Proof of Theorem 3

Proof. Fix an impact variable V , a noise variable N , and a capacity p. For every k P N, let

SPk “ pV, tNu
k
i“1, pq denote a k-stage screening problem, where pV,N, pq are fixed, and consider the

fixed-threshold strategy, τ “ ptk, . . . , tkq. That is, tk denotes the fixed threshold of τ in SPk.

We begin by establishing that ttkukě1 is a decreasing sequence that converges to vp`N as k Ñ8.

As shown in the proof of Theorem 3, for every k P N,

fVkptq “ 1
pfV ptq

k
ź

i“1

Pr
´

N ě tk ´ t
¯

“ 1
pfV ptq

”

Pr
´

N ě tk ´ t
¯ık

.

So, if tk ď tk`1, then

fVkptq “ 1
pfV ptq

”

Pr
´

N ě tk ´ t
¯ık

ě 1
pfV ptq

”

Pr
´

N ě tk`1 ´ t
¯ık`1

“ fVk`1
ptq,

and the inequality is strict for every t where fV ptqPr
`

N ě tk ´ t
˘

ą 0 and Pr
`

N ě tk ´ t
˘

ă 1. Thus,

we get a contradiction since Vk`1 is not normalized, and we deduce that tk`1 ă tk for every k P N. In

addition, tk ě V `N for every k; otherwise, there will be no screening whatsoever and the capacity

constraint would be violated. Hence, we conclude that ttkukě1 is a decreasing and bounded sequence,

and so converges.

To see that ttkukě1 converges to vp `N , consider the infinite sequence pvp `N, vp `N, . . . q. The

induced conditional distribution of V in the respective (infinite) screening problem SP is

fVSPptq “ 1
pfV ptq

8
ź

i“1

Pr pN ě vp `N ´ tq “

#

0, for every t ă vp,
1
pfV ptq, for every t ě vp.

If one would take an infinite strategy pt, t, . . . q such that t ‰ vp`N , the last computation shows that

the induced capacity would not be p. So, we conclude that limkÑ8 t
k “ vp `N .
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Finally, we need to prove that Vk converges in distribution to V |tV ě vpu. Fix t P R. If t ą vp,

then there exists kt P N such that tk ´ N ă t for every k ě kt, and Pr
`

N ě tk ´ t
˘

“ 1. Thus,

fVkptq “
1
pfV ptq for every t ą vp and every k ě kt. On the other hand, if t ă vp, then PrpN ě tk´ tq ă

PrpN ě vp `N ´ tq ă 1 for every k P N, which yields

fVkptq “
1
pfV ptq

”

Pr
´

N ě tk ´ t
¯ık

ă 1
pfV ptq rPrpN ě vp `N ´ tqs

k
Ñ 0 as k Ñ8,

as needed.

We now move on to the fixed-capacity strategy. Again, for every k P N, let SPk “ pV, tNu
k
i“1, pq

denote a k-stage screening problem where pV,N, pq are fixed, and consider the fixed-capacity strategy,

τ “ ptk1, t
k
2, . . . , t

k
kq. One can easily show that, upon a screening stage, the induced posterior distribution

of the impact variable first-order stochastically dominates the prior distribution (in fact, the two

distributions sustain the monotone likelihood-ratio property). Thus, to maintain a capacity of p1{k in

every stage, the thresholds need to strictly increase.

We start by proving that for every ε ą 0 and every l P N there exists Kl,ε P N such that for

every k ą Kl,ε there are at least l2 stages where the threshold is strictly higher than vp `N ´ ε, i.e.,

|ti : tki ą vp `N ´ εu| ě l2.

Fix ε ą 0, l P N, and let lk “ |ti : tki ą vp ` N ´ εu| denote the number of stages in which the

threshold is above vp ` N ´ ε. Note that the capacity up to stage k ´ lk is at least PrpV ą vp ´ εq

since values above vp ´ ε pass the screening in these stages. Denote pε “ PrpV ą vp ´ εq and note

that 1 ą pε ą p. In the remaining lk stages, the capacity is fixed to plk{k according to τ . Thus, when

considering the overall capacity p, we get p ą pε ¨p
lk{k, which translates to lk

k ą 1´ lnppεq
lnppq ą 0. In other

words, there exists c ą 0, which is independent of k, such that lk ą ck. One can now fix Kl,ε “
l2

c to

get the needed result.

Let us now use this claim to prove that τ converges to a perfect screening. Fix t ă vp. Note

δ “ vp ´ t. Fix l ą 0 so that Pr
`

N ě N ` δ
2

˘

ă 1´ 1
l . Take Kl,δ{2 such the previous claim holds, and

consider k ą Kl,δ{2. Then,

fVkptq “ 1
pfV ptq

k
ź

i“1

Pr
´

N ě tk ´ t
¯

ď 1
pfV ptq

“

Pr
`

N ě vp `N ´
δ
2 ´ t

˘‰l2

“ 1
pfV ptq

“

Pr
`

N ě N ` δ
2

˘‰l2

ď 1
pfV ptq

“

1´ 1
l

‰l2
Ñ 0

as l Ñ 8. So, for every t ă vp, the density fVkptq converges to zero, which necessarily leads to a

prefect screening.
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